Questions and answers for Module 2

R. Ganapathy
Senior Assistant Professor
School Of Electrical and Electronics Engineering SASTRA University

Table of Content

1 QUESTIONS 3
2 ANSWERS 4

1 Questions

1. What are the properties of a linear vector space?
2. What is the dimensionality of a linear vector space?
3. When is a quantum mechanical operator said to be linear ?
4. What are the properties of a Hermitian operator ?
5. State the first postulate of quantum mechanics.

2 Answers

1. The various properties of a linear vector space are as follows:

- $\left|V_{i}\right\rangle+\left|V_{j}\right\rangle=\left|V_{j}\right\rangle+\left|V_{i}\right\rangle$, known as commutative property of addition,
- $\left(\left|V_{i}\right\rangle+\left|V_{j}\right\rangle\right)+\left|V_{k}\right\rangle=\left|V_{i}\right\rangle+\left(\left|V_{j}\right\rangle+\left|V_{k}\right\rangle\right)$, known as associative property of addition,
- existence of a unique null vector $|\emptyset\rangle$ in V such that $\left|V_{i}\right\rangle+|\emptyset\rangle=\left|V_{i}\right\rangle=|\emptyset\rangle+\left|V_{i}\right\rangle$, thereby existing as an identity element of addition,
- existence of a unique inverse $\left|-V_{i}\right\rangle$ in addition such that $\left|V_{i}\right\rangle+\left|-V_{i}\right\rangle=|\emptyset\rangle$,
- $\alpha\left(\left|V_{i}\right\rangle+\left|V_{j}\right\rangle\right)=\alpha\left|V_{i}\right\rangle+\alpha\left|V_{j}\right\rangle$, pertaining to scalar multiplication,
- $(\alpha+\beta)\left|V_{i}\right\rangle=\alpha\left|V_{i}\right\rangle+\beta\left|V_{i}\right\rangle$, also pertaining to scalar multiplication and
- $\alpha\left(\beta\left|V_{i}\right\rangle\right)=(\alpha \beta)\left|V_{i}\right\rangle$, also pertaining to scalar multiplication.

2. The dimensionality of a linear vector space or linear vector space is decided by the maximum number of linear independent vectors in that linear vector space. Thus if there are at most N number of linear independent vectors, the linear vector space is N dimensional.
3. An operator, say, $\hat{\Phi}$ is said to be linear, if it satisfies the following mathematical relations:

- $\hat{\Phi} \beta|V\rangle=\beta \hat{\Phi}|V\rangle$.
- $\langle V| \hat{\Phi} \beta=\langle V| \beta \hat{\Phi}$.
- $\hat{\Phi}\left(\alpha\left|V_{1}\right\rangle+\beta\left|V_{2}\right\rangle\right)=\alpha \hat{\Phi}\left|V_{1}\right\rangle+\beta \hat{\Phi}\left|V_{2}\right\rangle$.
- $\left(\left\langle V_{1}\right| \alpha+\left\langle V_{2}\right| \beta\right) \hat{\Phi}=\left\langle V_{1}\right| \hat{\Phi} \alpha+\left\langle V_{2}\right| \hat{\Phi} \beta$.

4. For a Hermitian operator, all the eigen values are real. For distinct eigen values, the corresponding eigen vectors are orthogonal to each other.
5. The state of a quantum mechanical particle is represented by $|\psi\rangle$ in a Hilbert space which can be defined as a linear vector space consisting of an inner product space.
