Questions and answers for Module 2

R. Ganapathy Senior Assistant Professor School Of Electrical and Electronics Engineering SASTRA University

Table of Content

1	QUESTIONS	3
2	ANSWERS	4

1 Questions

- 1. What are the properties of a linear vector space ?
- 2. What is the dimensionality of a linear vector space ?
- 3. When is a quantum mechanical operator said to be linear ?
- 4. What are the properties of a Hermitian operator ?
- 5. State the first postulate of quantum mechanics.

2 Answers

- 1. The various properties of a linear vector space are as follows:
 - $|V_i\rangle + |V_j\rangle = |V_j\rangle + |V_i\rangle$, known as commutative property of addition,
 - (|V_i⟩ + |V_j⟩) + |V_k⟩ = |V_i⟩ + (|V_j⟩ + |V_k⟩), known as associative property of addition,
 - existence of a unique null vector $|0\rangle$ in *V* such that $|V_i\rangle + |0\rangle = |V_i\rangle = |0\rangle + |V_i\rangle$, thereby existing as an identity element of addition,
 - existence of a unique inverse $|-V_i\rangle$ in addition such that $|V_i\rangle + |-V_i\rangle = |\emptyset\rangle$,
 - $\alpha (|V_i\rangle + |V_j\rangle) = \alpha |V_i\rangle + \alpha |V_j\rangle$, pertaining to scalar multiplication,
 - $(\alpha + \beta) |V_i\rangle = \alpha |V_i\rangle + \beta |V_i\rangle$, also pertaining to scalar multiplication and
 - $\alpha(\beta|V_i\rangle) = (\alpha\beta)|V_i\rangle$, also pertaining to scalar multiplication.
- 2. The dimensionality of a linear vector space or linear vector space is decided by the maximum number of linear independent vectors in that linear vector space. Thus if there are at most *N* number of linear independent vectors, the linear vector space is *N* dimensional.
- 3. An operator, say, $\hat{\Phi}$ is said to be linear, if it satisfies the following mathematical relations:
 - $\hat{\Phi}\beta|V\rangle = \beta\hat{\Phi}|V\rangle.$
 - $\langle V | \hat{\Phi} \beta = \langle V | \beta \hat{\Phi}.$
 - $\hat{\Phi}(\alpha|V_1\rangle + \beta|V_2\rangle) = \alpha \hat{\Phi}|V_1\rangle + \beta \hat{\Phi}|V_2\rangle.$
 - $(\langle V_1 | \alpha + \langle V_2 | \beta) \hat{\Phi} = \langle V_1 | \hat{\Phi} \alpha + \langle V_2 | \hat{\Phi} \beta.$
- 4. For a Hermitian operator, all the eigen values are real. For distinct eigen values, the corresponding eigen vectors are orthogonal to each other.
- 5. The state of a quantum mechanical particle is represented by $|\psi\rangle$ in a Hilbert space which can be defined as a linear vector space consisting of an inner product space.